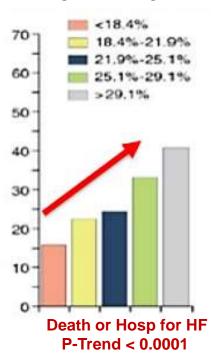
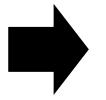
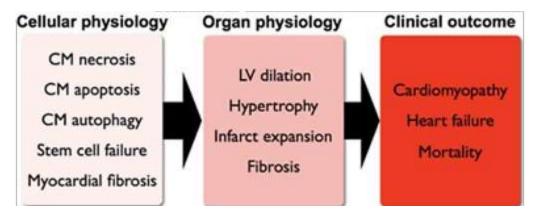

Options For "No Option" Patients: Focus On Less Invasive Ventricular Enhancement (LIVE) [Revivent[™]]

T. Santoso University of Indonesia Medical School, Medistra Hospital, Jakarta, Indonesia

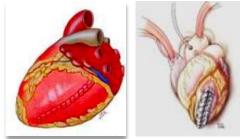

Background

Normal heart vs. Ischemic Cardiomyopathy

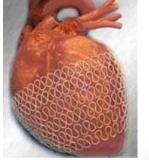



End-Diastolic Volume < 91 mL 70 1-108 mL 09-123 mL 60 123-142 mL >142 mL 50 40 30 20 10-0 **Death or Hosp for HF** P-Trend < 0.0001

In-Segment Length

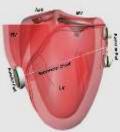

Myocardial Infarction

LV Cavity Restoration Procedures


LV volume reduction surgery:

- Open excision (Cooley, Batista
- Patch for geometric preservation(Dor)
- Aneurysmorraphy
- Surgical LV reduction <u>+</u> CABG (STICH)

Remodelling constraint (surgery):



CorCap device, Acorn (Acorn trial)

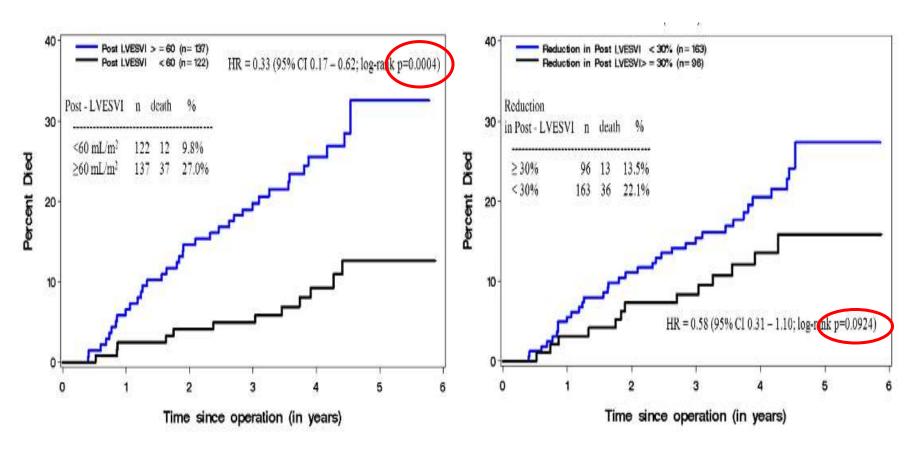
- HeartNet, Paracor Medical (HeartNet trial)
- VenTouch, (Mardil Medical)

LV reshaping implant& reduction of MR (surgery):

iCoapsys, Myocor Inc, (RESTOR-MV trial)

Modulation of autonomic verve system – ↓ LV remodelling

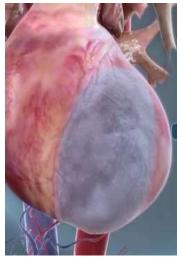
Vagal nerve stimulation (NECTAR-HF trial)


Revivient, Bioventrix

Parachute (Cardiokinetix)

Background

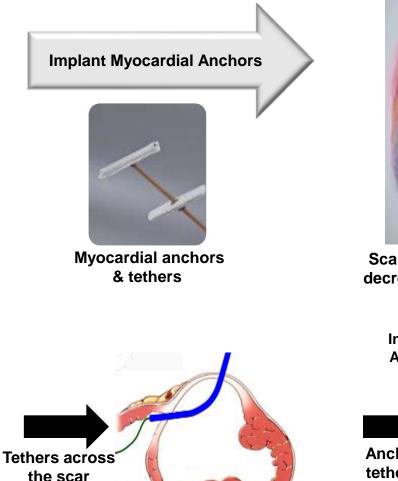
Lessons from STICH Trial



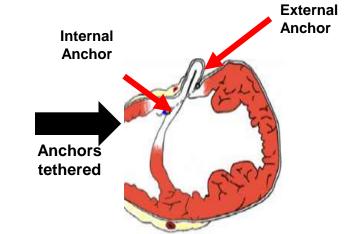
Cumulative risk of death: CABG plus SVR in 259 pts & post-op LVESVI < or $\geq 60 \text{ mL/m}^2$

Cumulative risk of death: CABG + SVR & reduction in postop $LVESVI < or \ge 30\%$ of baseline LVESVI

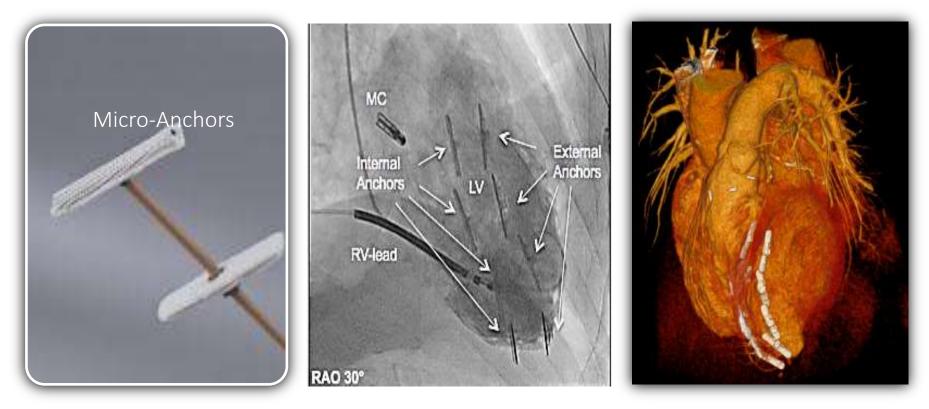
Less Invasive Ventricular Enhancement (LIVE) Revivent[™] - Technology Characteristics


Scar Exclusion = Volume & Wall Tension Reduction

Ischemic cardiomyopathy due to post-MI scarring


Scar

RV



Scar excluded, LV wall tension decreased & function improved

Less Invasive Ventricular Enhancement (LIVE) Revivent[™]: Myocardial Anchoring System

- Restore LV size, volume, shape & efficiency
- Rapid, consistent deployment
- Reduced surgical risk (no sternotomy, no CPB)
- Significant improvement in clinical outcomes

Less Invasive Ventricular Enhancement (LIVE) Revivent[™]

Myocardial Anchoring System – Combined Transthoracic / Endovascular Delivery (Hybrid Approach)

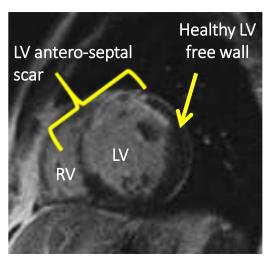
Inclusion Criteria

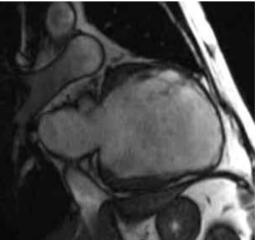
Dilated left ventricle post MI

Anteroseptal or anterior scar

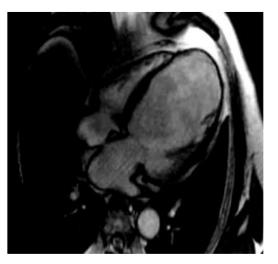
Akinetic or dyskinetic segment of LV

LVEF <u><</u> 40%

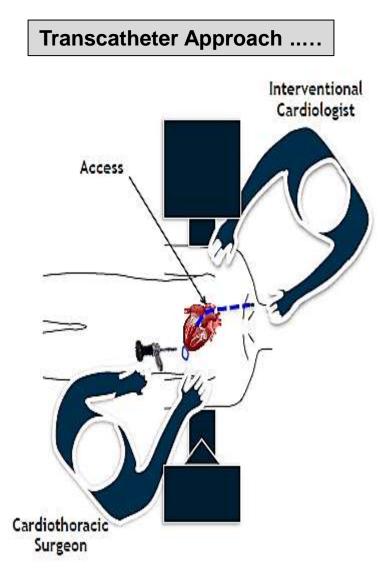

LVESVI > 60 ml/m2


NYHA FC II-IV

Exclusion Criteria


LV thrombus (AC first)

Previous CABG



LVEDV I 195.6 ml/m² LVESV I 161.1 ml/m² SV 61.4 ml; EF 18%

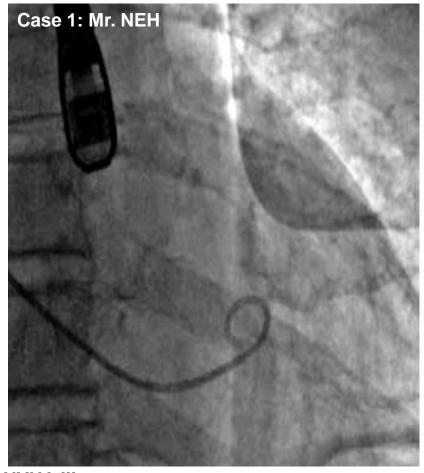
Less Invasive Ventricular Enhancement (LIVE) Revivent[™]

Numerous significant benefits

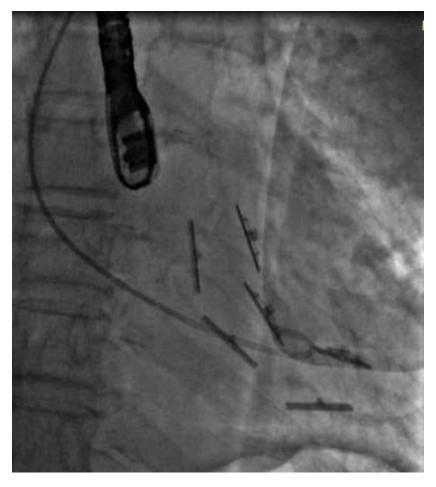
Adjustable scar exclusion tailored to patient

No left ventriculotomy

No sternotomy

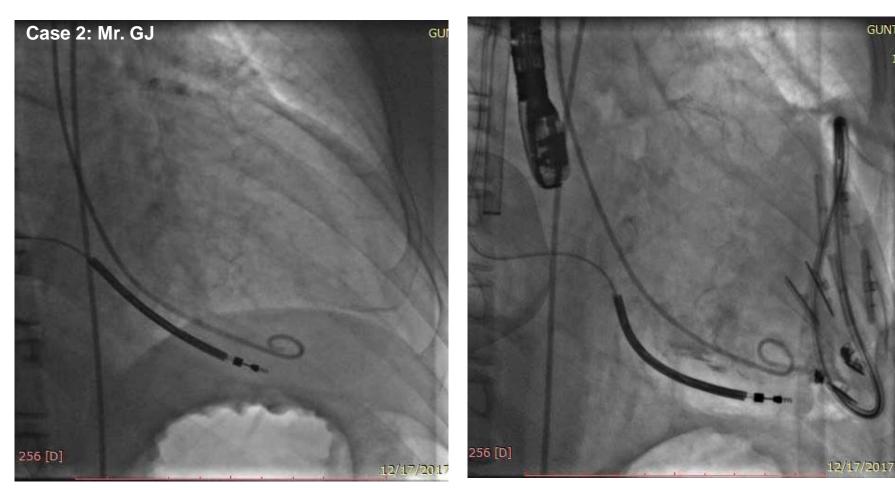

No extracorporeal circulation

No aortic cross-clamping


No ischemic arrest

CE Mark and U.S. Pivotal IDE approved

Pre & Post Revivent™ LV Angiography



NYHA III Massive scar involving septum, anterior, anterolateral, apical regions. Dyskinetic apex. EF 26%

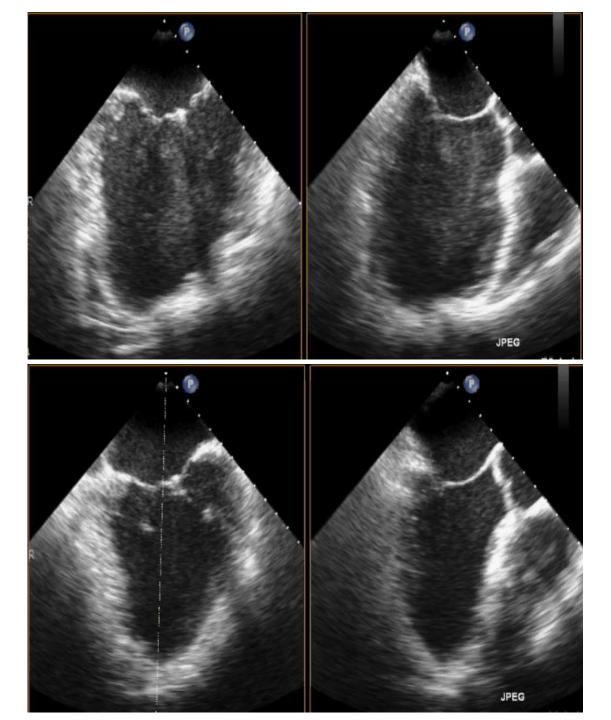
EF 56%, A LVESVI 35%

Pre & Post Revivent™ LV Angiography

NYHA III

Massive scar involving septum, anterior, anteriolateral, apical regions. EDVI 149 ml/m², ESVI 103 ml/m²

EDVI 91 ml/m², ESVI 66 ml/m², \triangle LVESVI 36%


Pre & Post Revivent™ Coronary Angiography

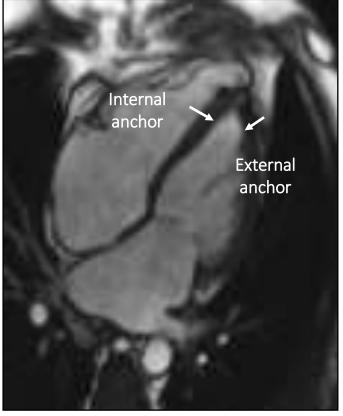
Before

After Revivent[™]: No flow compromise

Baseline

After ReviventTM Note: smaller LV with

enhanced contractility, better shaped apex, absence of SEC


Pre & Post Revivent Cardiac MRI - 12 Months More Physiological LV Size & Geometry

Baseline

6 Months Post Revivent Procedure

LVESVI = 127 ml/m²

 $LVESVI = 69 mI/m^2$

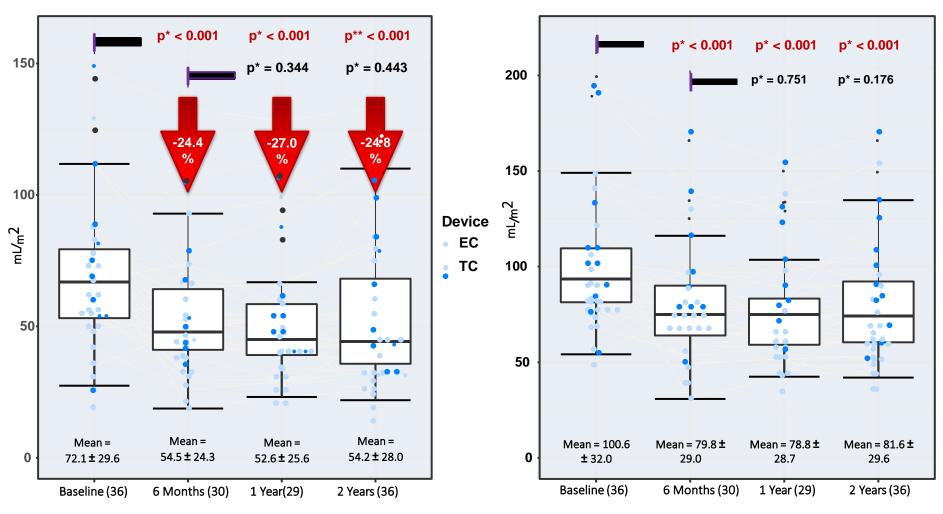
Current Clinical Data

Two clinical studies in EU using identical myocardial anchors in the similar patient population (89 patients)

- 52 cases in EU using sternotomy approach (EC)
- 37 cases in EU using mini thoracotomy less invasive hybrid approach (TC)

Postmarket data collection / Procedure Simplification Initiative (PSI):

• 57 cases in EU using mini thoracotomy less invasive hybrid approach (PSI)


Baseline Data: EC & TC

		EC	ТС	P value
	Ν	52	37	
Baseline Data:	Age [years]	57.9 ± 10.3	62.3 ± 9.2	0.107
EC & TC	Gender [m / f]	43 / 9	29 / 8	0.813
	BMI [kg / m²]	29.0 ± 5.7	28.5 ± 5.8	0.608
	Diabetes [%]	19.2	19.4	1.000
	Hypertension [%]	63.5	69.4	0.650
	Hyperlipidemia [%]	69.2	66.7	0.820
	Previous CVA [%]	13.5	8.3	0.517
	Neuro deficit [%]	12.5	33.3	0.422
	NYHA II [%]	44.2	41.7	1.000
	Prior PCI [%]	67.3	86.1	0.050
	Previous PM [%]	2.9	5.6	1.000
Data current as of November 201	Prior ICD [%]	15.4	58.3	< 0.001

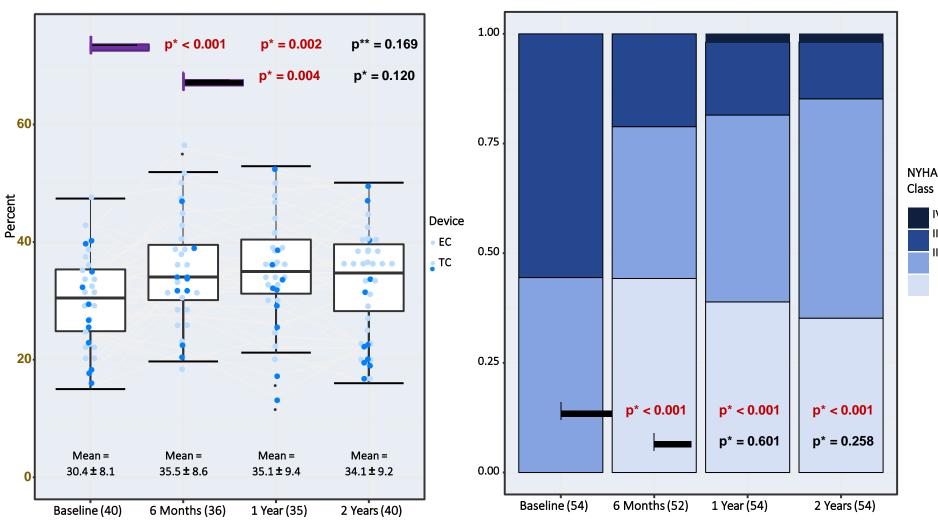
Left Ventricular Volume Index : Echo Data (Cases With 2–Year Follow–Up)

LVESVI

LVEDVI

*Student's t-Test, **Wilcoxon-Signed-Rank Test

Left Ventricular Ejection Fraction & NYHA Class: Echo & Clinical Data (Cases With 2-Year Follow-Up)

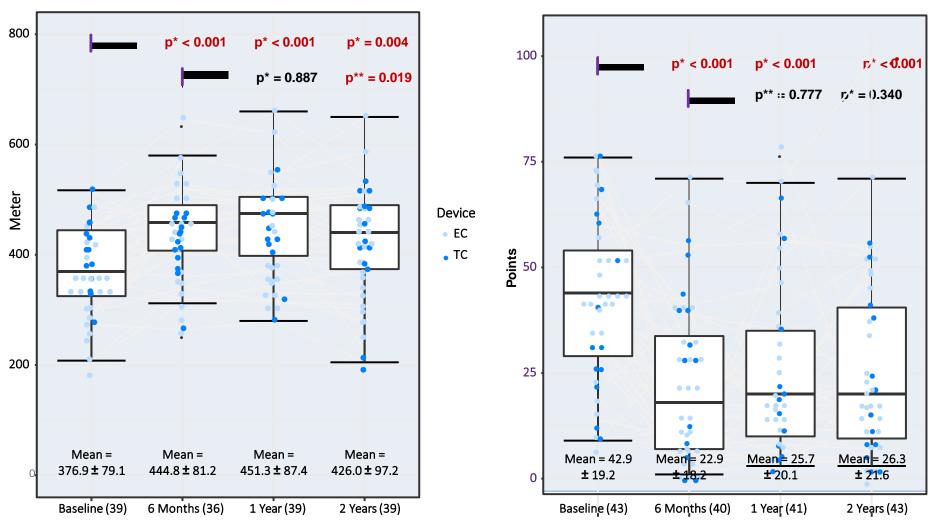


NYHA Class

IV

ш

11-1



^{*}Student's t-Test, **Wilcoxon-Signed-Rank Test

* Chi–Squared Test – Data current as of November 2017

Six Minute Walk Test (SMWT) & Minnesota Living with Heart Failure Questionnaire (MLHFQ) Cases With 2-Year Follow-Up

MLHFQ

^{*}Student's t-Test, **Wilcoxon-Signed-Rank Test

SMWT

^{*}Student's t-Test, **Wilcoxon-Signed-Rank Test

Procedure Simplification Initiative (PSI): Post Market Data Collection

Patient Demographics

Operative Data

Total Number of Patients	57	Total Number of Patients	54
Successful Procedures	54/57 (94.7 %)	Skin-to-Skin Time [hh:mm]	3:23 ± 1:21
Age [years]	58.2 ± 10.2	Total Anchors	2.7 ± 1.0
Height [cm]	170.0 ± 8.7	Internal Anchors	1.5 ± 0.7
Weight [kg]	77.8 ± 16.6	External Anchors	1.2 ± 0.8
BSA [m2]	1.91 ± 0.24	Elucroscopy Timo	49:06 ± 26:26
Gender [% male]	75.0	Fluoroscopy Time [mm:ss]	49.00 ± 20.20
Preop ICD / PM [%]	35.8	Dosage [mGy/cm ²]	2065 ± 1973

PSI Pre- /	Post-Op	Data
------------	---------	------

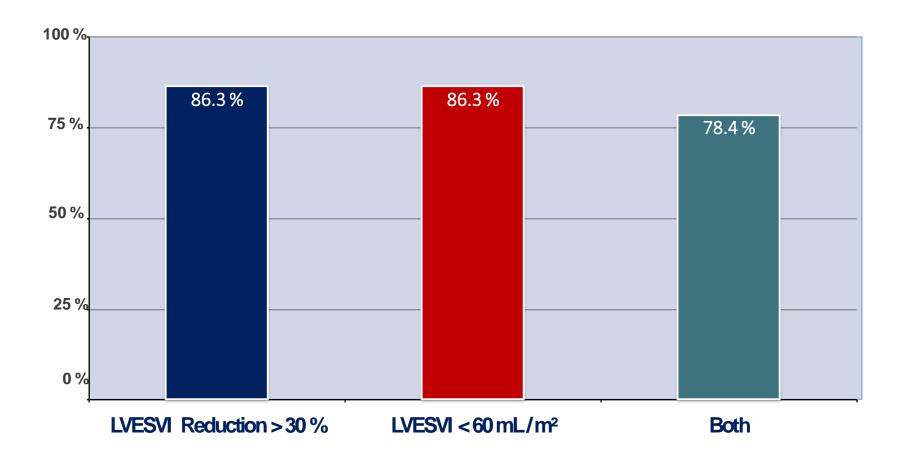
Comparison EC & TC / PSI

N=54	Pre-op	Post-op	Р		EC & TC (86)	PSI (54)
LVEF [%]	28.6 ± 7.8	36.8 ± 8.6	< 0.001	EF [Change in %]	+ 16.7	+ 34.1
LVESVI	67.9 ± 24.8	39.6 ± 8.4	< 0.001	LVESVI [Change in %]	- 24.4	- 42.5
[mL/m²]				LVEDVI [Change in %]	- 20.7	- 37.9
LVEDVI	95.5 ± 30.6	59.0 ± 2.1	< 0.001	Stay On ICU [Median in Days]	4	1
[mL/m ²] (Paired t-Test))			Hospital Stay [Median in Days]	23	7

Volumes data taken from intraoperative echocardiography. Data current as of December 18, 2017

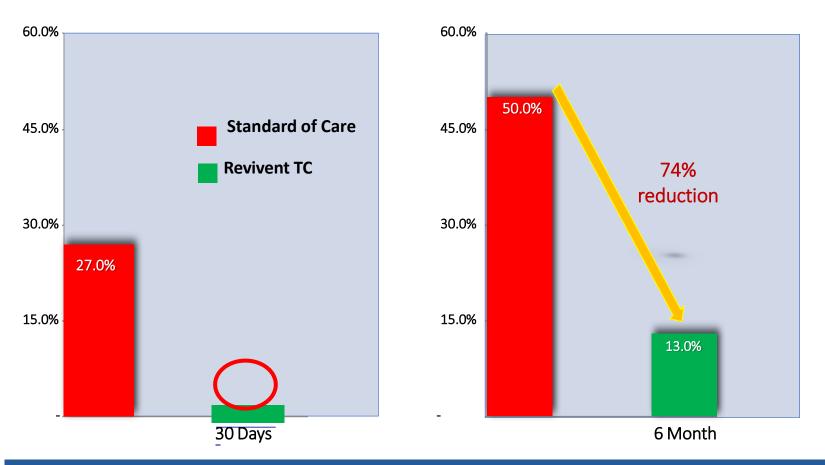
Complications

Total Number of Patients	54
In-Hospital Mortality	5 (9.3 %)
Tricuspid Valve Injury RV	6 (11.5 %)
Perforation	9 (17.3 %)
Anchor Pulled Through / VSD	3 (5.7 %)


Data current as of December 4, 2017

Impact on Mitral Regurgitation

MV ≥ 2 n = 12	Pre-Op	Post-Op	<i>p</i> [Paired t-Test]	Patient Results 6 Months Post Procedure Show Improved Blood Flow
MR [Grade]	2.2 ± 0.5	1.3 ± 0.8	0.008	Baseline 6 month follow up
Annulus Diameter ^[mm]	42.1 ± 7.9	42.6 ± 7.6	0.820	
Coaptation Depth		9.36 ± 2.62	0.031	
Tenting Area [mm ²]	2.54 ± 1.01	2.58 ± 0.85	0.148	Region of LV Scar Internal RV 1.09 RV 0.96
Tenting Volume [mm ³]	5.76 ± 3.24	6.23 ± 3.00	0.547	Change in papillary muscles geometry possibly influencing functional MR?


CoreLab Data, November 2017

Postoperative PSI Results Better Than STICH Cut-Offs

Revivent Dramatic Reduction In Readmission Rates

Readmission Rate: Current Standard of Care vs. Revivent TC

Revivent's dramatic reduction in readmission rates has the potential to deliver significant cost savings to a healthcare system that currently spends >\$30B annually treating HF in the U.S. alone

Source: Aghababian RV. Rev Cardiovasc Med 2002; 3:S3; Jong P et al. Arch Intern Med 2002; 162:1689 Jencks and Williams. NEJM 2009; 360:1418

Final Conclusions

- The Revivent system significantly:
 - reduces LVESVi and LVEDVi,
 - **improve** LV ejection fraction,
 - **improve** NYHA class, 6 minute walk test and QoL.
- With the Revivent TC system this can be done as minimally invasive hybrid procedure. In experienced centers the procedure showed a reasonable short learning curve
- These results remain stable for 2 years.
- The real clinical benefit needs to be confirmed by larger studies

Thank You